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This article considers the problem of the pressure of an axisymmetric die
on an elastic layer of finite thickness. Solution to this problem is ob-
tained in terms of asymptotic series in powers of h'i, where h is the
dimensionless thickness of the layer. The cases of plane and parabolic
dies are studied in detail. The solution obtained adequately described
the state of stress when the thickness of layer is of the order of the
diameter of the surface of contact.®*

1. Statement of problem. Let an elastic layer of finite thickness
h rest on a rigid frictionless foundation. An axially-symmetrical die,
loaded by a force P along its axis of symmetry, acts on this layer (Fig.1).

Let the surface of contact between the die and layer be defined in
cylindrical coordinates by the equation z = ¢{p). The boundary of this
surface 1s assumed to be a circle of unit radius, The plane xy will be
locaged on the rigid foundation, and the z-axis will be directed along
the axis of the die.

* After this article was submitted for printing, it came to the atten-
tion of the authors that another paper, written by Lebedev and Ufliand
[ 1] considers the axially-symmetric problem of a plane circular die
on a layer of finite thickness. The solution given in [1] will be
applicable, generally speaking, for any dimensionless thickness h. How-
ever, its use involves the numerical evaluation of a certain Fredholm
integral with subsequent numerical finding of quadratures. In this
respect the asymptotic formulas presented in this work are important,
since in numerous cases they give directly all the fundamental
characteristics of the problem.
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Fig. 1

Assume that the pressure between the die and layer is a known function
q(p). From [ 2], which considers equilibrium of an elastic layer subjected
to the action of known forces on its boundary, we obtain the following
relations:
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Zy (yz) = ek ['rka (7h) shyz 4 b (yh) ('(z chyz — 2m =2 7z)] 1.9

m
xg(12) = e~ [yha () shyz -+ b (z) vz ch qz) (1.10)
x4 (12) = e~k [vha (yh) chyz + b (yh) (72 sh yz — ch yz)] (1.11)
a(th) =ehchyh —2vh, b(th) = et shyh + 2vh (1.12)

For any function Q(y), formulas (1.1) to (1.6) satisfy the following
boundary conditions:

w——_.—'tpz:O for z=0, sz=0 for z=#Fh (1.13)

In order to fulfill two more conditions of contact between the layer
and die, the function Q(y) must satisfy the following relations:

w==8—¢(p) for0<o<i, z==h (1.14)
g, =0 for 1 <p, z2="h (1.15)
Here 8 is the displacement of the die due to force P,

Considering relations (1.1), (1.4) and (1.7), we conclude that (1.14)
and (1.15) will be satisfied if Q(y) is determined from equations:

e}

S—-——chfx,)l)_lQ(T)Jo('rp)d'r=cls--—<p(p)l (Czr__i”“—n;) O<o<t) [(1.18)
fem ot rdr=0  a<e (1.17)

Thus the problem of die pressure on an elastic layer may be reduced to
solving the paired integral equations (1.16) and (1.17),

2. Reduction of prohlem to Fredholm integrals. Method of
solution. It is proved in [ 3] that formulas

o0 o«

fomamar=g@ O<p<n, [QLGp)1dr =0 (t<p) (1)

0 o

are equivalent to

1 11
— i gny 2 ({yglyw) ausinay 9
Q)= — cosag)y-—-—-—i_yady—}- = §§——————~———~V1_yz dydu {2.2)

provided that gq{p) is a continuous function on the interval [0,1].



640 I.I. Vorovich and Iu.A. Ustinov

For Q(y) we obtain from (1.16) and (1.17)

SQ W) Jolrp)dy =cd—o(p)] + SQ (1) B (21R) Jo (1p) d

oo

o<e<t) (23)

§ 00070 (ro)ydy =0

(1 <p) (2.4)
Here

A4 2yh— 2R

Equating (2.1) - (2.5) we conclude that Q(y) satisfies the following
equation:

Q(a)= —ccos aSV

o
-

11
Y [5— 2 ((yB—ewuwl .
— B—o@)ldy +— c§§ iy 20 27 au sinoudydu +

1
+ -cosa | AL 2§Q<1)B(27h)fo(~ry)dx+

0

<

11
+ 2§ N8 0o B 2w Jo (ryw) dydy dy (2.6)
000

Equation (2.6) may be simplified by utilizing the well-known relation

SJ(uy)yd sin u
Vi— u

(2.7)
From (2.7) the following formula is easily obtained
1 o
2 d
+cosa | SQ(T)B(ZYk)Jo(TP)dT-}—
0
+ _z_‘ioiiyausin auQ('f)B(zTh)Jo (1yu) dy dy du —
K 000 Vi—y?
01
= 2{ {cos o cos yuB (24%) @ (1) dy du (2.8)
00

In addition, it is clear that given the relation

1 11
. 9 &
2 cosag ydy + 2 ggyausmau dydu sin a
T Vi-——y2 b
0

2 (2.9)
J Viz 4 a
(2.8) and (2.9) will simplify equation (2.6) to
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1 11
B
0 00

ool
+ ——i— S gcos o cos yuB (2vh) Q (Y) dy du (2.10)
00

Let the operator A (Q) be given by

o1
AQ) = —i—g Scos au cos YuB (21h) Q (1) dydu (2.11)

It is clear that A holds in the domain of functions C[0, =], i.e. in
the domain of continuous and bounded (on the semiaxis) functions with the
norm

@Il =sup|Q]| 0 < a < ) (2.12)

We will show that A is a fully continuous operator.

Iet { R} be some multitude bounded in C[0, «]. We will establish that
the multitude { A(R)} is compact in this domain. To establish this it is

sufficient to prove that {A(R)} is uniformly bounded in C[0, =] and uni-
formly continuous on [0, «].

The first condition is clearly evident from (2.11) if we consider that

§OB (2yh) dy < oo (2.13)
Further we have 0 o1
| AR (@-+MN)] —A'[R(a)11<%g S[cos(a-{— N u — cos au] X
X | cos '{u[B(Z':h())|R|d1du (2.14)
From (2.14) we easily obtain (2.15)

o1 oo
[4IR @+ N—AR@)|< | R|IN | (uB @h) drdu = 2LV B @yryay
00 0

(2.13) and (2.15) establish the uniform continuity on [0, =] . Therefore
this shows that A is a fully continuous operator in C[0, «]. Accordingly,

in order to prove that equation (2.10) is a solution it must be shown
that from the relation

D(@)=0
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where

1 11
D(a) = -%2:— cd SI: e __ —12:—0 [cosag ve v) dy + S S ye W;Q:ii;n au dydu] (2.16)
0 00

it follows that Q(a) = 0 in view of equation (2.10),

We will prove first that if D(a) = 0 then it follows
$=0, ¢(0)=0 (2.17)
Specifically, equation D(a) = 0 is equivalent to

11
cosag q’(y)]y +SSV:’_ = [0 —o(y)lsinaududy =0 (2.18)
0 o0

If a = 0 is substituted into (2.18) we obtain

(2.19)

1
=

As in the definition of & on the surface of contact § — ¢(p) > 0, so
from equation (2.19) we obtain § — ¢(y) = 0 on the surface of contact.

Furthermore, if equation (2.10) had a non-trivial solution Q%°a) for
D(a) = 0, then formulas (1.1) to (1.6) with Q° substituted for Q, would
always give the regular (at infinity) solution by the theory of elasti-
city for a layer with the boundary conditions given by (1.13), (1.15) and
in addition with

w=0, it 0<p! (2.20)

Under these conditions w = r o, = 0 over the entire layer, which
will result in Qa) = 0. 'Iherei%re equatlon (2.10), which defines our
problem, always has a unique solution.

Assuming that ¢(y) is a twice continuously differentiable function on
[0,1], we have

yo(yu) ausinau du] (2.21)

—,%-c[SSi';“-—-—cosalg yq»(y) +S e

Og/-u-

T

1 11
2 [sinaldy—o(y) y—o¢ (¥ y° sin au 2y’1> (yu) + uy®e” (yu)
_2 [ n S e dy +§§ — dydu]
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cosau cos yuB (2yh) Q(t)dydu =

°§°

-] o 1
o e S B (2vh) Q (1) cosydy+ —3— S S B(2vh) Q (7) sin awu sin yu dydu
0 0

(=X e 3 g

(2.22)

fl

By means of (2.21) and (2.22) equation (2.10) may be written in the
following form:

1
2 rsinalSy—emy—o vy
Q) = n [ a S Vi—q? y +

i sinau 29’ (yu) 4 uy’cp (yu) 2 [sina
+ §§ dydu] + = [ 3

o §B(2xh>0 (1) cos 7 dy +

o1
+;2:‘ S S B (2¢h) Q () sin au sin yu dy du] (2.23)
00

On the right-hand side of (2.23) the Fourier-Bessel transforms in the
first and third member will be irregular for p = 1. The Fourier-Bessel
transforms in the second and fourth member will be regular over the entire
plane. Consequently we will consider the following two cases:

1. The shape of the die is such that the surface of contact extends to
the boundary of the die (Fig. 2). In this case the solution must be de-
rived directly from equation (2.10).

Fig. 2.

II. The surface of contact remains within the boundary of the die, in
which case we must have

+
. Ssy W —e My +S B (2¢k)Q (y)cosydy = 0 (2.24)
Vi—y

and equation (2.23) becomes:
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11
__ ((sinau 2y%" (yu) + uy® 9" (yu)
Q@ = {{= 8 ) dyd
00
o1
+ % S S B (2¢h) Q (1) sin au sin yu dydu (2.25)
00

Solving(2.25) for Q we can obtain q(p) and the corresponding force P
from

q(p)= S Q (1) Jo(xp) 7 dY (2.26)

0

From (2.24) we then obtain &, the displacement of the die .

3. Selution of problem. Equation (2.10) may be written in the

following form:
Q) =Cu(@)+ 4(Q) 3.1)
Here A(Q) is given by (2.11), and

1

11
Qda):%c&sma———%—c[cosag ve (v) dy—I—SSy JISN dydu | (3.2)
090

a
0

It is clear that A(Q) is a convergent operator in the domain C[0, «],
if h is large enough. In fact, from (2.11) we obtain
2 (o0}
J4|< =B @m)dy (3.3)
0
From (3.3) it can be shown by means of simple calculations that A(Q)
will be a convergent operator if h > 4/ = 1.27. As will be shown below,
equation (3.1) can be easily solved by the method of successive approxi-
mations already when h ~ 2.

Similarly, equation (2.25) may be written in the following form:

Q (@) = Qo(a) + K(Q) (3.4)
where
o sin au 2y’ (yu) + uyde” (yu)
§§ e dydu (3.5)
K(Q) = —;-S S «B (2xh) Q (1) sin au sin yu dudy (3.6)

Simple numerical calculations using (3.6) show that K(Q) will also be
a convergent operator when h > 0.97, We will show later that (3.4) may be
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easily solved by successive approximations already when h = 1.5,

4. Plane cylindrical die. In this case

e(p)=0 (4.1)

and the solution to the problem should be based on equation (2.10), which
assumes the following form in view of (4.1):

ool
Qa)= %a sin g %S Scosamcos quB (21h) @ (1) dydu (4.2)
(L]

Solving (4.2) by successive approximations yields:

Qo (2) = 2-c3¥02 (4.3)

Q1 (2) = Qo) + -f— Sgcos xy co8 T ¥ B(u) 2L 912(7?5‘2}') dudy (4.4)

1001 00
Q,(az)-(),(a)—{-:f;,gg Sgcosaycos———cos <5 €08 12:- X
0 00
x B (u) B (v) 52 ‘;’ 2C, g dv dy da (4.5)

etc. Passing from Qa) to glp) by means of (2.26) the following success-
ive approximations are obtained for q{p):

2¢c3

g0 (p) = V=g (4.6)
28  ( ;
q1(p) = go (p) + m SB (u) %—) cos -;h-— du -+ (4.7)
o
28F dy ¢
+ #S_FVJ___.?SB(u)Sin% sin Tg—du
<] 1]
g:(p) = q:(p) + (4.8)

oo

1
- B(u)cos—dugcosg%deB( ) sln("/2k) S%dv-{—
4]

n’h’lf T—pt Tw/2h

1
23 2k
+n,h°, ST————p’SB(u) o Sin 5 y dugcos %B( )s—"lv(’;—éh—)-cos—-dv
0

0
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o 1
2¢8 .
75 (p) = q2 () + ’—-—c—**SB(u)GOSZ—l; du&cos%dx X

L7223 T
R 1 — ot :

8

B () cos%dvgcos -;%‘dz SB(T)

1
sin (v / 2h)
] 4

X Y {2h{

Yz
cos w-dy +
1 et oo

1
c8 dy v . ouy ux
+ m"‘h"gV_—'—yﬂ-pz SB(u) <5 Sin —Z—h—-dugcos -z-ﬁ-deB(v) X
0 [

b S

4 1]

1

oo

i 2k

X cos%dvgcos -;—%—deB('() %005 —;—Z—d«{ (4.9)
[ 1]

To simplify their use, (4.6) to (4.9) may be expressed in an asymptotic
form for large values of h. This leads to the following approximate
formulas:

2¢8
9o (p) - . ‘/

""'T__"——p; (4.10)

0.755 , 0.337 , 0.685
ot T

1.012 3.42 3.42
_Pz(T + =)+t ] @t

2¢d 0.755 0.570 |, 0.337 0.685
qe(p)=”‘/i_—pz[1+ h + he + PE + R

0.237 1.012  0.763 | 3.42 0.770 3.42 | 0.430
— 2= (Gt et o) et e ) ] 62)

2¢ed 0.755 , 0.570 , 0.767 | 0.492  0.237
qs(p)z - V.ii———pi[i + & -+ X3 + X + Rs . R8T
1.012 | 0.763 |, 3.996 0.770 3.42 0.430
_‘92( T e v ey a1 )+P‘(W +"_hr)+] (4.13)

2¢3 0.755 , 0.570 , 0.767 , 0.325 . 0.492 0.527
‘h(?)zﬂv [1+ h + h? + i + g + e wm

1—p?

1.012 , 0.763 , 3,996  0.335 3.42 , 0.430 |
_92( e + R + B K )+P4(_,_h—5—+_h°—)+ J (4'14)

2c8
QI(P)=“V}-—__—PS[1+

2c8 {.755 0.570 0.767 0.325 0.737 0.527
%(P)=n}/-1—_-—p,-{1+ R

~ (1,012 0.763 3.996 0.335 3.42 0.430
—P'( 1] + 0 -+ T e )“H"(?“{"T)‘F’“] (4.15)

2c8 0.755 , 0.570 | 0.767  0.325 , 0.737 (.342
qﬂ(p)znyﬂi_-—p’[lﬂl‘ % + X + 7B + X + ne o KS +

1.012  0.783  3.996 . 0.335 3.42  0.430
+92(“ BT R T R T s )+94(71?“+T)+"’] (4.16)
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Examination of formulas (4.10) to (4.16) indicates that in transition
from asymptotic expansion g, to asymptotic expansion g, ., the coeffi-

cients of h"*(k = 0, 1, ...

, n) remain identical. This leads us to con-

clude that the first n terms in the asymptotic expansion g, coincide
exactly with the first n terms in the expansion of ¢ in asymptotic series.

In accordance with formulas (4.10) to (4.16), the following approxima-
tions are obtained for the force P acting on the die:

P, = 4cd

0.755  0.337 | 0.228

(4.17)

Py= et 4 292 — R L 22 e (4.18)

0.755 | 0.570  0.337

0.508 |, 0.228 , 0.506

P,.—_4ca[1+ =

0.755 , 0.570 |, 0.093

A + ho + 78 +](419)

0508  0.348 | 0.506

P3=465|:1+ h + ht =+ h3

0.755 |, 0.570 | 0.093

e — e ] (420)

0483 0348 0.074 ,

ht he h® +

0.755 | 0.570 , 0.093 0.183  0.104  0.074 1

(4.21)

P4=4C8
Py

1+ h +lh2 + h8
1+

h+h2+h3

0.755 , 0.570 , 0.093 0.183 0.104 0.110

T T he + - ](4.22)

[
- 408[
[

Py = 4eb[1 + 232 + 250 ok T — T — S — e ] (4.23)

The accuracy of expansions (4.10) to (4.16) and (4.17) to (4.23) im-
proves with increasing values of h. For example, for h = 1.5 the diffe-
rence between fifth and sixth approximation of P is only 2 per cent, which
indicates that formula (4.23) gives good approximation for h > 1.5,

- 4(p)
10 Z¢

[ p

R | N |

0 23 1
Fig. 3.

1

0 0.5 [
Fig. 4.

Similar analysis of formulas (4.10) to (4.16) shows that for h = 1.7
the difference between fifth and sixth approximations of the stress under
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the die is again 2 per cent. Therefore formula (4.15) gives good approxi-

mation for A » 1.7.
On the basis of formulas (4.10) to (4.16) and (4.17) to (4.23) we may
analyze the effect of thickness of the layer on the stress distribution

due to the loaded die.
Fig. 3 shows the variation of g{p, h) given by formula (4.15). Fig. 4
illustrates the force of penetration P for different values of h.

5. Parabolic die. let us now assume that ¢{p) is given by
2
o(p) = 5 (5.1)

Since the surface ¢(p) is smooth in this case, equation (2.25) must
be used to determine Q. Substituting (5.1) into (2.25) we obtain

4¢c 1 d sina 1
ST ——

100
Q) = — BT e “hagg Bu)Q ({F)%sin ;—% sinay dydu (5.2)
(]

In this case formula (2.24) yields:
1y 1(

[
Recall that the boundary radius of the surface of contact was assumed

(5.3)

as unity.
The results of successive approximations for the pressure under the

die g(p) are the following:
0.337 0286 | 0.024

q:1(p) = %m[i'F et gt
. .46 . 010
+9”{—$+9—2§g)+p‘023+---] (5.4)

0.024  0.205

4 R 0.337 -~ 0,268 , 0.114
QE(P)=;’CI§V1“'92[1+ BT TRs + 7 + T T8 +
0.190 |, 0.029  0.064 0.010
b + X h; ) + 94 X + - '} (5°5)

+6*(—
It can be easily recognized that further approximations will contain

corrective temms of the order of h~® and higher.

For the force P which will result in penetration 8 consistent with
the given loading conditions we obtain the following relations:

8¢ 0.337 0.342 0.037

Py = o [1 b e e ] (5.6)
8 0.337 0.342 | 0114 | 0.037 0.230

P2=§;—[1—|— e +] (.7)
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Formulas (5.4) to (5.7) are recommended when h > 1.5,

If we omit the requirement that the boundary radius of contact sur-
face be unity, formula (5.7) assumes the form:

8cad

P, =301 4 0337 (5P — 0342 () + 0014 (5) +
+0.037 () —0.230 () + +-] (5.5)

where a is the radius of the boundary of contact surface, and H is the
thickness of the layer.

3R
1["-1
H
- !
I
A 051
il
| | a,
SO, / o F
0 5 1 0 05
Fig. 5. Fig. 6
1—"m'
| 4cH
[
as—
a
rgL . 1 A ._L#J F 1 pj
0 a5 1 ¢ a5
Fig. 7. Fig. 8.

From (5.3), (5.5), and (5.8) the following formulas can bLe obtained:
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650
=% =013 (%) + 0.114 (%) + 0.025 (‘;—j)’ —0,004 (%) - ... 59)
8 =T [(%) —0.504 () —0.225 (Tl)" —0.098 (%) — 0.197 (52)° ]
Gmax = ot |7 + 0-225 (53)' —0.018 (%' —0.0126 (%) + 0.013 G+
[3P1?Un——1)]%

8m

0 =

« 1s the maximum pressure under the die. Figs. 5, 6, 7 illus-
%ependence given by (5.9), and Fig. 8 shows the dependence of

Here q_
trate the
g(p) on the thickness h.
In conclusion it should be noted that equations (4.2) and (5.2), which
define Qla) and which were shown to be Fredholm integrals, permit

numerical integration for any value of h.
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