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This article considers the problem of the pressure of an axisymmetric die 

on an elastic layer of finite thickness. Solution to this problem is ob- 

tained in terms of asymptotic series in powers of h-l, where h is the 

dimensionless thickness of the layer. The cases of plane and parabolic 

dies are studied in detail. The solution obtained adequately described 

the state of stress when the thickness of layer is of the order of the 

diameter of the surface of contact. l 

2. Statement of problem. Lt an elastic layer of finite thickness 
h rest on a rigid frictionless foundation. An axially-symnetrical die, 

loaded by a force P along its axis of symnetry, acts on this layer (Fig.l). 

Let the surface of contact between the die and layer be defined in 

cylindrical coordinates by the equation z = #&I. The boundary of this 
surface is assumed to be a circle of unit radius. ‘Ihe plane xy will be 
located on the rigid foundation, and the z-axis will be directed along 
the axis of the die. 

l After this article was submitted for printing, it came to the atten- 

tion of the authors that another paper, written by Lebedev and Ufliand 
[ 11 considers the axially-symmetric problem of a plane circular die 

on a layer of finite thickness. The solution given in [ 11 will be 

applicable, generally speaking, for any dimensionless thickness h. How- 
ever, its use involves the numerical evaluation of a certain Fredholm 

integral with subsequent numerical finding of quadratures. In this 

respect the asymptotic formulas presented in this work are important, 
since in numerous cases they give directly all the fundamental 

characteristics of the problem. 
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Fig. 1 

Assune that the pressure between the die and layer is a known function 
q(p 1. From [ 21 , which considers equilibrium of an elastic layer subjected 

to the action of known forces on its boundary, we obtain the following 
relations: 

ul=w-$ O” Q(Y) s qqj- 22 (74 Jo (7P) d7 
0 

O” Q(Y) 
T’pz =Tp*f2 

s 
igpq- 23 w Jl(7P) 7d7 

0 

I: --2~~($) Qz= I - ~4 W Jo (7~) 7d7 
0 

(1.1) 

(1.2) 

(1.3) 

(1 S4) W =-- ‘B Q(r)J,(yp) ydy - 

-(h + z$?- y(h+z)Q (7) Jo (7P) 7d7 + 2’m, I) i[e-~V+L e-d”-z)]Q(7) Jdyp)d7\ 

0 0 I 

T,, = (h - Z) 1 Q (7) e-u(h-z)Jl(yp) ra d7 - (h J $1 e-y(hSzK? (7) JI (7~) 7” d7 (1.5) 
0 0 

zL = ye-y(h+ Q (7) Jo (7~) 7d7 - ~c--y(h+zi Q (7) JO (7~) 7d7 - (1.6) 
0 

- (h - z) re-y(h+ Q (y) Jo (7~) Tad7 - (h + 2) r eeY(“+‘) Q (7) JO (7~) rad7 
0 0 

Q(7) = jP(P)Jo(7P)P& Q (P) = 01 ifl p>i (1.7) 

A (7h) = 2yh + sh 27)~ (1.8) 
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22 (yz) = e--h [7ha (7h) sh 7z + b (7~) (7~ ch 72 - v sh 7~)] (1.9) 

za (72) = e--yh [ylza (7h) sh yz + b (72) 72 ch 721 (1.10) 

x4 (72) = e-Yh l7ha (y/z) ch 72 + b (7h) (72 sh 72 - ch 7z)] (1.11) 

a ($2) = e--Yh ch y/z - 2712, b (7h) = e--yh sh 71~ + 2yh (1.12) 

For any function Q(y), formulas (1.1) to (1.4) satisfy the following 
boundary conditions: 

W = Tpz = 0 for z=o, Tpz = 0 for 2 = h (1.13) 

In order to fulfill tm, more conditions of contact between the layer 

and die, the function Q(y) must satisfy the following relations: 

w=6-y(p) forO,(p<1, z=h (1.14) 

Q, = 0 for f<P, 2=k (1.15) 

Here S is the displacement of the die due to force P. 

Gnsidering relations (l.l), (1.41 and (1.71, we conclude that (1.14) 
and (1.13) will be satisfied if Q(y) is determined from equations: 

lx3 

s ch (2yh) - 1 

A (yh) Q (7) J0 (7P) d7 = c 1s --p(p)1 (c=&) P<PPU [U.W 
0 

YQ (7) Jo (7P) 7d7 = 9 (1 < PI (1.17) 
0 

Thus the problem of die pressure on an elastic layer may be reduced to 
solving the paired integral equations (1.161 and (1.17). 

2. Redrrction of problem to Fredholm integrals. Method of 

solution. It is proved in I31 that formulas 

TQ (YIJO (7P) d7 = g (P) (9 G P G I), YQ (7) Jo (7P) 7d7 = 9 (1 < P) (2.1) 
0 0 

are equivalent to 

provided that q(p) is a continuous function on the interval [O,ll , 



640 I.I. Vorovich and Iu.A. Ustinov 

For Q(y) we obtain from (1.16) and (1.17) 

i44(r)JO(7P)d7=C[6-~(P)l+~~(r)D(2lh)Jo(7P)d~ (O<'pGl) (2.3) 
0 0 

co 

pr)Jo (TP)vh = 0 (1 <P) (2.4) 

Here 
B(27h) = 

1 + 2yh - ,-=uh 

2yh + sh 2yh (2.5) 

Equating (2.1) - (2.5) we conclude that Q(y) satisfies the following 

equation: 

Equation (2.6) may be simplified by utilizing the well-known relation 

1 

s $i+dy 
0 

Y 

sin ~4 =- 
u (2.7) 

From (2.7) the following formula is easily obtained: 

~c~s~S~~Q(?)BOJ,(TP)~~+ 
0 0 

cell 

+3s\ 
0 00 

y"g; Q(r)B (2yh)Jo(yyu) drdy du = 

001 
2 

=- 
IL ss 

cos uu cos TUB (2yh) Q (7) dy du 
0 0 

In addition, it is clear that given the relation 

(2.8) 

(2.9) 

(2.8) and (2.9) will simplify equation (2.6) to 
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cosaucosyuB(2yh)Q(~)dy du 
0 0 

(2.10) 

let the operator A (Q) be given by 

A(Q) =+i\ cos au cos yuB (2yh) Q (7) dy du 
0 0 

(2.11) 

It is clear that A holds in the domain of functions C[O, -1, i.e. in 

the domain of continuous and bounded (on the semiaxis) functions with the 

norm 

II Q II = SUP I Q I (OSaCr=) (2.12) 

We will show that A is a fully continuous operator. 

let IR) be some multitude bounded in C[O, ml. We will establish that 
the multitude (A(R) 1 is compact in this domain. To establish this it is 
sufficient to prove that (A(R) 1 is uniformly bounded in C[O,m] and uni- 

formly continuous on 10, ml. 

‘Ihe first condition is clearly evident from (2.11) if we consider that 

Further we have 

Y( ) B 2yh dy < oo 
0 

(2.13) 

lA[I?(a+L)]-A~[~(a)]l<$~\[cos(a+L)u-cosau] x 

x ( cos 7~ [ B (2&;, R ( drdu (2.14) 

From (2.14) we easily obtain (2.15) 

IA[R(a+h)]-A[R(a)](< qlnuihl~juB(2yb)dldu=~n~B(2~~~)d~ 
0 0 0 

(2.13) and (2.15) establish the uniform continuity on[O, -1. ?herefore 

this shows that A is a fully continuous operator in C[O,=l. Accordingly, 

in order to prove that equation (2.10) is a solution it must be shown 
that from the relation 

D(a)=0 
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where 

D(a)= Icl~-~c[cosaS~dy+S~y~(u~~a~~~audydu] (2.16) 
0 00 

it follows that Q(a) I 0 in view of equation (2.10). 

iv e will prove first that if D(a) E 0 then it follows 

8 = 0, ‘p (9) = 0 
Specifically, equation D(a) I 0 is equivalent to 

(2.17) 

[6 - ‘p (y)] sin au dudy = 0 (2.18) 

If a = 0 is substituted into (2.18) we obtain 

1 

s y [8 - cp (y)] dy = 0 
ovi=j2 

(2.19) 

As in the definition of 6 on the surface of contact 6 - +(p) > 0, so 
from equation (2.19) we obtain S - 4(y) E 0 on the surface of contact. 

Furthermore, if equation (2.10) had a non- trivial solution Q’(a) for 
D(a) 3 0, then formulas (1.1) to (1.6) with Q” substituted for Q, would 
always give the regular (at infinity) solution by the theory of elasti- 
city for a layer with the boundary conditions given by (1.13), (1.15) and 
in addition with 

w=o, if o<p< 1 (2.20) 

Under these conditions w = I 0 over the entire layer, which 
will result in Q(a) I 0. ‘Iheref%e=e”$aLion (2. lo), which defines our 
problem, always has a unique solution. 

Assuming that c+(y) is a twice continuously differentiable function on 

IO,11 ( we have 

1 
2 sin a 

- c [ 6 --cosa x a 5 
0 

-+++ dy + 5 j y’p ‘“v”G; au dydu] = 
00 

(2.21) 
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eO1 

1s cos au cos yuB (Zyh) Q (7) dy du = 
0 0 (2.22) 

= a? TB (2yh) Q (7) COST dr+ $ r 1 B (2yh) Q (7) sin au sin yu dydu 
0 0 

ESy means of (2.21) and (2.22) equation (2.10) may be written in the 

following form: 

0 
vF=$ 

29’ (yu) + uy*qf (p) 
dydu] + ; p+ YB (2yh) Q (7) cos 7 dy + 

0 

+~~j~B(2yh)Q(y)sinausin7ud~du] (2.23) 

On the right-hand side of (2.23) the Fourier-Bessel transforms in the 

first and third member will be irregular for p = 1. ‘lbe Fourier-Bessel 

transforms in the second and fourth member will be regular over the entire 

plane. Consequently we will consider the following twr, cases: 

I. ‘lhe shape of the die is such that the surface of contact extends to 

the boundary of the die (Fig. 2). In this case the solution must be de- 
rived directly from equation (2.10). 

P 

& X 

Fig. 2. 

II. lhe surface of contact remains within the boundary of the die, in 

which case we must have 

+1 

c s &/ - YQ (Y) - Q’ (Y) Ya 
+ ~W~h)QOcodr = 0 (2.24) 

0 
vi-yy' 

0 

and equation (2.23) becomes: 
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(2.25) 

Solving(2.25) for Q we can obtain q(p ) and the 

from 

corresponding force P 

q (P) = TQ (7) Jo (7~) r dy 
0 

From (2.24) we then obtain 8, the displacement of the die . 

(2.26) 

3. Solution of problem. Equation (2.10) may be written in the 

following form: 

QW=Qd4+4Q) (3.1) 

Here A(Q) is given by (2.111, and 

It is clear that A(Q) is a convergent operator in the domain C[ 0, -1 , 
if h is large enough. In fact, from (2.11) we obtain 

!jAll<+[~ (2yh)dy (3.3) 

From (3.3) it can be shown by me’ms of simple calculations that A(Q) 

will be a convergent operator if h > 4/n = 1.27. As will be shown below, 

equation (3.1) can be easily solved by the method of successive approxi- 

mations already when h = 2. 

Similarly, equation (2.25) may be written in the following form: 

where 
Q(a) = Q&4 + K(Q) (3.4) 

Q,, = 55 % 2Y29’ 'Y;y_uT' (yu) dydu 

00 

(3.5) 

K(Q) =~.~57B(21h)Q(7)sinbu sinyududy (34 

Simple numerical calcu:aLions using (3.6) show that K(Q) will also be 

a convergent operator when h > 0.97. We will show later that (3.4) may be 
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easily solved by successive 

4. Plane cylindrical 

and the 

assumes 

an elastic layer of finite thickness 645 

approximations already when h = 1.5. 

die. In this case 

‘p(P)=*0 (4.1) 

solution to the problem should be based on equation (2.101, which 

the following form in view of (4.1): 

Solving (4.2) by successive approximations yields: 

Q&z) = +Sy 

Q1 (a) = Qo(a) + g \ ~cos ay cos g B(u) “‘“y(;~~)dudy 

00 
lrnlrn 

G-3) 

(4.4) 

x B (u) B (v) “‘*;;;h2h’. du dv dy dx (4.5) 

etc. Passing from Q(a) to q(p) by means of (2.26) the following success- 

ive app~ximations are obtained for q(p): 

Qo (P) = 
2c8 

nV7q3 (4.6) 

4B(P) = QlfP) + f4.8) 

co 1 co 

+ 
2c8 s SCWY i * 

B (u) cos g du[ cos z dz [B (v) “; 1”:hh2h, cos g dv + 
cl 0 

I 

sin g du \ cos z ds.~B(v) siny(~~~’ cos GdD 
0 0 
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x ~O~~dv~~os~dv~B~~~ sin (Y I% cos ZY 

y/zh xdr (4.9) 

0 0 

To simplify their use, (4.6) to (4.9) may be expressed in an asymptotic 

form for large values of h. 'Ibis leads to the following approximate 

formulas: 

(4.10) 

2c8 
%(fJl= - 

“l/t-p* [ 
0.755 1+T+!gI+09gL 

q2(P)=sv;) *[l+“~+!+*!!+!$!L 
--P 

0.763 _~s+a(G!$E+__+~_ o$)+ppr$+oT)+ ...I (4.12) 

2cS 
QS w = 1E fi I 

0.755 0.237 ~+T+y+qz+*!L!$_T_ 

_,2(~+~+3+_o~)+,4(~+%.$)+...] (4.13) 

94(P) = 
2c8 

%fl-pa II 0.755 
- 

1; h ; 0~~0 ~_~~~+~_~- 

- P2 
( 

1.012 __+“~+?$LA!~)+p(~+o?_)+ . ..I (4.14) 

qb(P)= 2~[1+0~+*~+*~+0~+~_0~_ 
xfl-p* 

_pq?g5+!!$!?_+5p.i!g)+p4(?~+~)+...] (4.15) 

Qa (P) = 
2c8 
_- I 

0.755 

XVI--P* 

1) h p;o py pg+“!?._ 0.342 
r+ 
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Exmnination of formulas (4.10) to (4.16) indicates that in transition 

from asymptotic expansion q, to asymptotic eqansion q,+ 1 the coeffi- 

cients of hak(R = 0, 1, . . . . n) remain identical. This leads us to con- 

clude that the first n terms in the asymptotic expansion q, coincide 

exactly with the first n terms in the expansion of q in asymptotic series. 

In accordance with formulas (4.10) to (4.16), the following approxima- 

tions are obtained for the force P acting on the die: 

P,= 4cs (4.17) 

PI = 4c6 
[ 
1+ 09 

0.337 
-T+F+...] (4.18) 

p*=4cs l+~+O~-T- 
C 

0.337 0.508 
-ha+o$+O$+ *..](4.19) 

p,=4c~1+~+0!J+~~--T;i-_ 
[ 

0.508 0.348 
h6 + F + . - $4.20) 

0.074 
he + -. - (4.21) 1 
0.074 

-hb + . .- (4.22) 1 
p6=4cfj l+!J~+~!?__+!?$-~~--~- 

[ 
0.110 
h6 + . . . (4.23) 1 

The accuracy of expansions (4.10) to (4.16) and (4.17) to (4.23) im- 

proves with increasing values of h. For example, for h = 1.5 the diffe- 

rence between fifth and sixth approximation of P is only 2 per cent, which 
indicates that formula (4.23) gives good approximation for h > 1.5. 

Fig. 3. Fig. 4. 

Similar analysis of formulas (4.10) to (4.16) shows that for h = 1.7 
the difference between fifth and sixth approximations of the stress under 
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the die is again 2 per cent. Therefore formula (4.15) gives good approxi- 

mation for h > 1.7. 

On the basis of formulas (4.10) to (4.16) and (4.17) to (4.23) we may 

analyze the effect of thickness of the layer on the stress distribution 
due to the loaded die. 

Fig. 3 shows the variation of q(p, h) given by formula (4.15). Fig. 4 
illustrates the force of penetration P for different values of h. 

5. Parabolic die. Let us now assume that $6) is given by 

cfM=z$ (5.1) 

Since the surface r#(p) is smooth in this case, equation (2.25) must 
be used to determine Q. Substituting (5.11 into (2.251 we obtain 

In this case formula (2.24) yields: 

cp--g+$2 ($3(u)cos~du = 0 
0 

(5.3) 

Recall that the boundary radius of the surface of contact was assumed 

as unity. 

‘lhe results of successive approximations for the pressure under the 

die q(p ) are the following: 

It can be easily recognized that further approximations will contain 

corrective terms of the order of h-” and higher. 

For the force P which will result in penetration 6 consistent with 
the given loading conditions we obtain the following relations: 
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Formulas (5.4) to (5.7) are recommended when h > 1.5. 

If we omit the requirement that the boundary radius of contact sur- 

face be unity, formula (5.7) assumes the form: 

P,==g[l +0.337(+0.342($+ 0.114(;~+ 

+ 0.037(G)'-0.23O(;y + l . -1 

where a is the radius of the boundary of contact surface, and H is the 

thickness of the layer. 

Fig. 5. Fig. 6. 

Fig. 7. Fig. 8. 

From (5.3), (5.5), and (5.8) the following formulas can be obtained: 
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a 

H 2 
-=-- 0.113 ($7 + 0.114 c;)” + 0.025 &)’ -0.,04(~)~ + * * l (599) 

6 “R” =- [h)” -0.504 @>” -0.225 ($y -0.098 ($)‘- 0.197 ($>” + . . .] 

(/ 
4cH a, 

mar = xN [H + 0.225 (s)” -0,018 6;)” -0.0126 @)7 + 0.013 (3)” + l . l ] 

a = 3PR(m - 1) ‘1. 
0 8/u 7 

fkre 4, 
% 

x 
is the maximum pressure under the die. Figs. 5, 6, 7 illus- 

trate the ependence given by (5.9), and Fig. 8 shows the depentlence of 

q(p) on the thickness h. 

In conclusion it should be noted that equations (4.2) and (5.21, which 
define Q(a) and which we-e shown to be Fredholm integrals, pennit 
numerical integration for any value of )1. 
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